- (b) State and prove Jensen's formula.
- 10. (a) State Hadamard's factorization theorem and use it to show that

 $\sin \pi z = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$

(b) State and prove the Great Picard theorem.

Define analytic contraction and explain power series method for the anerge communion.

) — State and prove Schwarz's reflection principle.

VI-TINU

4

Let G and R be regions such that there is one-one analytic function F of G onto R. Let $a \in G$ and $\infty = f(a)$. If g_a and γ_{a} are the Green's functions for G and R with singularities a and α respectively then show that $g_a(z) = \gamma_a(Rz)$.

4031/700/KD/448

Roll No. Total Pages : 4

4031

DMDE/M-19

COMPLEX ANALYSIS

Paper-MM-404

Time : Three Hours] [Maximum Marks : 80

Note : Attempt *five* questions in all, selecting at least *one* question from each unit. All questions carry equal marks.

UNIT-I a) 1 to mag

- (a) Define complex line integral. State Cauchy's integral theorem. Verify Cauchy's theorem for the function f(z) = z³ iz² 5z + 2i if path is circle given by |z 1| = 2.
 - (b) Define path in a region, bounded variation and simply connected domain. Also define winding number of a closed curve with simple properties.

4031/700/KD/448

[P. T. O. 14/6

Download all NOTES and PAPERS at StudentSuvidha.com

2.

3.

State and prove Cauchy's integral formula for higher

derivatives. Also evaluate $\int_{C} \frac{\sin z dz}{\left(z - \frac{\pi}{4}\right)^3}$ where C is the circle

(a) State and prove Liouville's theorem.

(b) If the function f(z) is analytic and one valued in |z - a| < R, prove that for 0 < r < R, $f'(a) = \frac{1}{\pi r} \int_{-\pi}^{2\pi} P(\theta) e^{-i\theta} d\theta$ where $P(\theta)$ is the real part of $f(a + re^{i\theta})$.

. (a) State Laurent's theorem and prove the uniqueness of it.

UNIT-II

- (b) State and prove Rouche's theorem.
- 5. (a) Define residue at infinity and evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}.$

4031/700/KD/448

2

(b) Prove that at each point z of a domain where f(z) is analytic and f'(z) ≠ 0, the mapping w = (z) is conformal.

UNIT-III

(a) State and prove Hurwitz's theorem.

- (b) State and prove Riemann mapping theorem.
- (a) Define Gamma function and prove that

$$\overline{(z)}\ \overline{(1-z)} = \frac{\pi}{\sin \pi z}$$

- (b) State and prove Mittag-Leffler's theorem.
- (a) Define analytic continuation and explain power series method for the analytic continuation.
 - (b) State and prove Schwarz's reflection principle.

UNIT-IV

(a) Let G and R be regions such that there is one-one analytic function F of G onto R. Let a ∈ G and ∞= f(a). If g_a and γ_α are the Green's functions for G and R with singularities a and α respectively then show that g_a(z) = γ_α(f(z)).

3

4031/700/KD/448

6.

7.

8.

9.

[P. T. O.

Download all NOTES and PAPERS at StudentSuvidha.com